Differential modulation of motor neurons that innervate the same muscle but use different excitatory transmitters in aplysia.
نویسندگان
چکیده
The medial portion of intrinsic buccal muscle 3 (I3m) is innervated by two excitatory motor neurons, B3 and B9. B3 uses glutamate as its fast transmitter and expresses the neuropeptide FMRFamide, whereas B9 uses acetylcholine as its fast transmitter and expresses the neuropeptide SCP. This preparation was used to study peptidergic modulation of muscles innervated by neurons that use different fast excitatory transmitters. First, we determined the effects of the application of the neuropeptides expressed in these neurons on excitatory junction potentials (EJPs) and contractions. FMRFamide increased the amplitude of EJPs and contractions evoked by B3 while decreasing those evoked by B9. This is the first observation in buccal muscle of a substance that modulates two excitatory neurons innervating the same muscle in opposite directions. SCP increased EJPs contraction amplitude, and the rate of muscle relaxation for both motor neurons. We determined that SCP potently increased cAMP levels in I3m as it does in other buccal muscles. Stimulation of B9 also caused increased cAMP levels in I3m providing independent evidence for SCP release. Finally, stimulation of B9 increased both the contraction amplitude and relaxation rate of B3-evoked I3m contractions in a manner similar to that observed using exogenous SCP. By inhibiting B9's cholinergic transmission with an antagonist, we were able to observe modulatory effects of B9 in the absence of fast excitatory effects. We found that the magnitude of the modulation was dependent on the firing frequency and did occur at frequencies and patterns of firing recorded previously for B9 during ingestive-like motor programs.
منابع مشابه
Modulation of neuromuscular transmission by conventional and peptide transmitters released from excitatory and inhibitory motor neurons in Aplysia.
The anterior portion of intrinsic buccal muscle (I3a) is innervated by two excitatory motor neurons, B3 and B38, and the newly identified inhibitory motor neuron, B47. We show that B47 is cholinergic while B3 and B38 are not. B3 and B38 have previously been shown to express the neuropeptides FMRFamide and the small cardioactive peptides (SCPs) A and B, respectively. We present evidence here tha...
متن کاملGlutamate is a fast excitatory transmitter at some buccal neuromuscular synapses in Aplysia.
Studies of the modulation of synaptic transmission in buccal muscle of Aplysia were limited because the conventional fast transmitter used by a number of large buccal motor neurons was unknown. Most of the identified buccal motor neurons are cholinergic because they synthesize acetylcholine (ACh) and their excitatory junction potentials (EJPs) are blocked by the cholinergic antagonist hexametho...
متن کاملSerotonin and the small cardioactive peptides differentially modulate two motor neurons that innervate the same muscle fibers in Aplysia.
The anterior portion of intrinsic buccal muscle 3 (I3a) is innervated by two motor neurons, B3 and B38, which appear to use glutamate as their fast excitatory transmitter. B3 and B38 express the neuropeptides FMRFamide and the small cardioactive peptides (SCPs), respectively. We have shown previously that stimulation of B38 causes release of the SCPs from terminals in the muscle. The I3a muscle...
متن کاملActivity of multiple identified motor neurons recorded intracellularly during evoked feedinglike motor programs in Aplysia.
1. The firing patterns of 22 motor neurons were determined by simultaneously recording intracellularly from up to 7 neurons during evoked feedinglike buccal motor programs (BMPs). Intracellular stimulation of cerebral-buccal interneuron 2 (CBI-2) or tactile stimulation of the odontophore were used to elicit BMPs in a reduced preparation. 2. Evoked BMPs were identified as either ingestive-like (...
متن کاملCholinergic neuromuscular synapses in Aplysia have low endogenous acetylcholinesterase activity and a high-affinity uptake system for acetylcholine.
In the present study, we have demonstrated that ACh is the predominant fast excitatory transmitter used by identified motor neurons innervating feeding muscles in Aplysia. A detailed study of ACh metabolism was then carried out in a well-characterized neuromuscular preparation, intrinsic muscle 5 (15). This neuromuscular system has a high-affinity uptake system for choline. The rate of uptake o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 82 4 شماره
صفحات -
تاریخ انتشار 1999